[go: up one dir, main page]

login
A060391
If 10^n can be written as x*y where the digits of x and y are all nonzero, then let a(n) = largest such y, otherwise a(n) = -1.
1
1, 5, 25, 125, 625, 3125, 15625, 78125, -1, 1953125, -1, -1, -1, -1, -1, -1, -1, -1, 3814697265625, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 116415321826934814453125, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
OFFSET
0,2
COMMENTS
According to Ogilvy and Anderson, 10^33 is the highest known power of ten that can be expressed as the product of two zero-free factors. "If there is another one, it is greater than 10^5000." p. 89
REFERENCES
C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, p. 89.
Rudolph Ondrejka, Nonzero factors of 10^n, Recreational Mathematics Magazine, no. 6 (1961), p. 59.
EXAMPLE
10^2 = 4 * 25, so a(2) = 25.
CROSSREFS
Cf. A060376 (for values of x).
Sequence in context: A335506 A129066 A102169 * A000351 A050735 A195948
KEYWORD
sign,base
AUTHOR
Jason Earls, Apr 02 2001
STATUS
approved