[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060311
Expansion of e.g.f. exp((exp(x)-1)^2/2).
9
1, 0, 1, 3, 10, 45, 241, 1428, 9325, 67035, 524926, 4429953, 40010785, 384853560, 3925008361, 42270555603, 478998800290, 5693742545445, 70804642315921, 918928774274028, 12419848913448565, 174467677050577515, 2542777209440690806, 38388037137038323353
OFFSET
0,4
COMMENTS
After the first term, this is the Stirling transform of the sequence of moments of the standard normal (or "Gaussian") probability distribution. It is not itself a moment sequence of any probability distribution. - Michael Hardy (hardy(AT)math.umn.edu), May 29 2005
a(n) is the number of simple labeled graphs on n nodes in which each component is a complete bipartite graph. - Geoffrey Critzer, Dec 03 2011
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.5b.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..518 (first 101 terms from Harry J. Smith)
Paul Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.
FORMULA
E.g.f. A(x) = B(exp(x)-1) where B(x)=exp(x^2/2) is e.g.f. of A001147(2n), hence a(n) is the Stirling transform of A001147(2n). - Michael Somos, Jun 01 2005
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ exp(1/2*(exp(r)-1)^2 - n) * n^(n+1/2) / (r^n * sqrt(exp(r)*r*(-1-r+exp(r)*(1+2*r)))), where r is the root of the equation exp(r)*(exp(r) - 1)*r = n.
(a(n)/n!)^(1/n) ~ 2*exp(1/LambertW(2*n)) / LambertW(2*n).
(End)
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/(2^k * k!). - Seiichi Manyama, May 07 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 2), j=2..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 02 2019
MATHEMATICA
a = Exp[x] - 1; Range[0, 20]! CoefficientList[Series[Exp[a^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Dec 03 2011 *)
PROG
(PARI) a(n)=if(n<0, 0, n!*polcoeff( exp((exp(x+x*O(x^n))-1)^2/2), n)) /* Michael Somos, Jun 01 2005 */
(PARI) { for (n=0, 100, write("b060311.txt", n, " ", n!*polcoeff(exp((exp(x + x*O(x^n)) - 1)^2/2), n)); ) } \\ Harry J. Smith, Jul 03 2009
(PARI) a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/(2^k*k!)); \\ Seiichi Manyama, May 07 2022
CROSSREFS
Column k=2 of A324162.
Sequence in context: A134018 A355719 A028417 * A184947 A330250 A207652
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Mar 27 2001
STATUS
approved