[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069994
a(n) = Sum_{i=0..2n} B(i)*C(2n+1,i)*6^i where B(i) are the Bernoulli numbers, C(2n,i) the binomial coefficients.
3
-2, 10, -170, 6370, -415826, 41649850, -5922729722, 1134081384850, -281284596509858, 87722769712529770, -33597252908389628234, 15502327024398065811010, -8481855507605264686660850, 5429636257086663655134162970
OFFSET
1,1
COMMENTS
Related to those formulas derived from Bernoulli polynomials: Sum_{k>0} sin(k*x)/k^(2n+1) = (-1)^(n+1)/2*x^(2n+1)/(2n+1)!*Sum_{i=0..2n} (2Pi/x)^i*B(i)*C(2n+1,i).
FORMULA
From Peter Bala, Mar 02 2015: (Start)
a(n) = 6^(2*n - 1)*B(2*n - 1,1/6), where B(n,x) denotes the n-th Bernoulli polynomial. Cf. A002111, A009843, A069852.
Conjecturally, a(n) = 2 * the unsigned numerator of B(2*n - 1,1/6). If true then this sequence is a bisection of 2*A158073.
G.f.: -3*t*sinh(2*t)/sinh(3*t) = -2*t + 10*t^3/3! - 170*t^5/5! + ....
G.f.: Sum_{n >= 0} { 2/(n+1) * Sum_{k = 0..n} (-1)^(k+1)*binomial(n,k)/( (1 - (6*k + 1)*x)*(1 - (6*k + 5)*x) ) } = -2 + 10*x^2 - 170*x^4 + 6370*x^6 - ....
(End)
MAPLE
seq(6^(2*n-1)*bernoulli(2*n-1, 1/6), n=1..14); # (after Peter Bala) Peter Luschny, Mar 08 2015
PROG
(PARI) for(n=1, 25, print1(sum(i=0, 2*n, binomial(2*n+1, i)*bernfrac(i)*6^i), ", "))
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Benoit Cloitre, May 01 2002
STATUS
approved