[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069854
Denominators of coefficients of expansion of sinh(x)/sin(x) (even powers only).
3
1, 3, 18, 1890, 22680, 1247400, 157172400, 6129723600, 81729648000, 127932046704000, 1646485441080480000, 37869165144851040000, 62372742591519360000, 9304453876089900528000000, 5075156659685400288000000, 4459030689216262044805920000000
OFFSET
0,2
LINKS
EXAMPLE
G.f. = 1 + (1/3)*x^2 + (1/18)*x^4 + (13/1890)*x^6 + (17/22680)*x^8 + (97/1247400)*x^10 + ...
MAPLE
a:= n-> denom(coeff(series(sinh(x)/sin(x), x, 2*n+2), x, 2*n)):
seq(a(n), n=0..24); # Alois P. Heinz, Feb 01 2022
MATHEMATICA
With[{m=60}, CoefficientList[Series[Sinh[x]/Sin[x], {x, 0, m}], x]][[1 ;; ;; 2]]//Denominator (* G. C. Greubel, Jan 31 2022 *)
PROG
(Magma)
m:=60; R<x>:=PowerSeriesRing(Rationals(), m);
b:= Coefficients(R!( Sinh(x)/Sin(x) ));
[Denominator( b[2*n-1] ): n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jan 31 2022
(Sage) [denominator( ( sinh(x)/sin(x) ).series(x, 2*n+3).list()[2*n] ) for n in (0..60)] # G. C. Greubel, Jan 31 2022
CROSSREFS
Cf. A069853.
Sequence in context: A000853 A065402 A131489 * A316369 A291078 A335181
KEYWORD
easy,frac,nonn
AUTHOR
Benoit Cloitre, May 03 2002
STATUS
approved