[go: up one dir, main page]

login
A069274
13-almost primes (generalization of semiprimes).
28
8192, 12288, 18432, 20480, 27648, 28672, 30720, 41472, 43008, 45056, 46080, 51200, 53248, 62208, 64512, 67584, 69120, 69632, 71680, 76800, 77824, 79872, 93312, 94208, 96768, 100352, 101376, 103680, 104448, 107520, 112640, 115200
OFFSET
1,1
COMMENTS
Product of 13 not necessarily distinct primes.
Divisible by exactly 13 prime powers (not including 1).
LINKS
Eric Weisstein's World of Mathematics, Almost Prime.
FORMULA
Product p_i^e_i with Sum e_i = 13.
MATHEMATICA
Select[Range[30000], Plus @@ Last /@ FactorInteger[ # ] == 13 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
Select[Range[116000], PrimeOmega[#]==13&] (* Harvey P. Dale, Mar 11 2019 *)
PROG
(PARI) k=13; start=2^k; finish=130000; v=[]; for(n=start, finish, if(bigomega(n)==k, v=concat(v, n))); v
(Python)
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A067274(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 13)))
return bisection(f, n, n) # Chai Wah Wu, Nov 03 2024
CROSSREFS
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), this sequence (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Sequence in context: A289477 A222527 A035908 * A220585 A305756 A195661
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Mar 13 2002
STATUS
approved