[go: up one dir, main page]

login
A069258
Triangle T(n,k) = number of partitions of 2*n into n-k prime parts, n>1, 0 <= k <= n-2.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 3, 2, 2, 1, 1, 2, 4, 3, 4, 2, 2, 1, 1, 2, 4, 4, 4, 6, 2, 2, 1, 1, 2, 4, 4, 6, 6, 6, 2, 3, 1, 1, 2, 4, 5, 6, 8, 6, 7, 3, 3, 1, 1, 2, 4, 5, 7, 8, 10, 7, 9, 3, 3, 1, 1, 2, 4, 5, 7, 10, 10, 12, 9, 11, 3, 2, 1, 1, 2, 4, 5, 8, 10, 12, 12
OFFSET
2,10
COMMENTS
Row sums give bisection of A000607.
EXAMPLE
For n=7 the row is [1,1,2,3,1,2] because there are 10 partitions of 14 into prime parts (cf. A000607): 1 with 7 parts: 2+2+2+2+2+2+2; 1 with 6 parts: 2+2+2+2+3+3; 2 with 5 parts: 2+3+3+3+3, 2+2+2+3+5; 3 with 4 parts: 3+3+3+5, 2+2+5+5, 2+2+3+7; 1 with 3 parts: 2+5+7; 2 with 2 parts: 7+7, 3+11.
CROSSREFS
Sequence in context: A317335 A014709 A278161 * A273134 A126207 A276711
KEYWORD
easy,nonn,tabl
AUTHOR
Vladeta Jovovic, Mar 10 2002
STATUS
approved