[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069020
a(1) = 1; a(n) = smallest number of the form k*a(n-1) +1 divisible by n^2.
0
1, 4, 9, 64, 1025, 19476, 331093, 993280, 73502721, 1396551700, 64241378201, 6616861954704, 853575192156817, 16217928650979524, 1232562577474443825, 57930441141298859776, 3475826468477931586561, 79944008774992426490904, 10072945105649045737853905
OFFSET
1,2
COMMENTS
Terms from Robert G. Wilson v.
There is no solution to k * 10072945105649045737853905 == -1 (mod 20^2) hence the sequence is finite. - Sean A. Irvine, Mar 28 2024
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Block[{k = 1}, While[ !IntegerQ[(k*a[n - 1] + 1)/n^2], k++ ]; Return[k*a[n - 1] + 1]]; Table[a[n], {n, 1, 19}] (* Robert G. Wilson v *)
nxt[{n_, a_}]:=Module[{n2=(n+1)^2, k=1}, While[!Divisible[k*a+1, n2], k++]; {n+1, k*a+1}]; NestList[nxt, {1, 1}, 17][[All, 2]] (* Harvey P. Dale, Nov 10 2022 *)
CROSSREFS
Sequence in context: A055859 A162991 A062926 * A220189 A122956 A041777
KEYWORD
nonn,fini,full
AUTHOR
Amarnath Murthy, Apr 02 2002
EXTENSIONS
Offset corrected and sequence completed by Sean A. Irvine, Mar 28 2024
STATUS
approved