OFFSET
1,1
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 2.
F. Ruskey and J. Woodcock, Counting Fixed-Height Tatami Tilings, Electronic Journal of Combinatorics, Paper R126 (2009) 20 pages.
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
For n >= 2, a(n) = 2*F(n+1), where F(n)=A000045(n) is the n-th Fibonacci number.
G.f.: x*(x^2-x-3) / (x^2+x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009
From Colin Barker, Jan 29 2017: (Start)
a(n) = (2^(-n)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / sqrt(5) for n>1.
a(n) = a(n-1) + a(n-2) for n>3. (End)
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - 2 + x. - Stefano Spezia, Apr 18 2022
MAPLE
with(combinat): 3, seq(2*fibonacci(n+1), n=2..40); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
Join[{3}, Table[2 Fibonacci[n + 1], {n, 2, 50}]] (* Vincenzo Librandi, Oct 07 2018 *)
CoefficientList[Series[(x^2-x-3) / (x^2+x-1), {x, 0, 50}], x] (* Stefano Spezia, Oct 07 2018 *)
PROG
(PARI) Vec(x*(3+x-x^2) / (1-x-x^2) + O(x^50)) \\ Colin Barker, Jan 29 2017
(Magma) [3] cat [2*Fibonacci(n+1): n in [2..50]]; // Vincenzo Librandi, Oct 07 2018
(GAP) Concatenation([3], List([2..40], n->2*Fibonacci(n+1))); # Muniru A Asiru, Oct 07 2018
CROSSREFS
Essentially the same as A006355.
Essentially the same as A078642. - Georg Fischer, Oct 06 2018
KEYWORD
easy,nonn
AUTHOR
Dean Hickerson, Mar 11 2002
STATUS
approved