[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068922
Number of ways to tile a 3 X 2n room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.
8
3, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338, 126491972
OFFSET
1,1
LINKS
R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 2.
F. Ruskey and J. Woodcock, Counting Fixed-Height Tatami Tilings, Electronic Journal of Combinatorics, Paper R126 (2009) 20 pages.
FORMULA
For n >= 2, a(n) = 2*F(n+1), where F(n)=A000045(n) is the n-th Fibonacci number.
G.f.: x*(x^2-x-3) / (x^2+x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009
From Colin Barker, Jan 29 2017: (Start)
a(n) = (2^(-n)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / sqrt(5) for n>1.
a(n) = a(n-1) + a(n-2) for n>3. (End)
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - 2 + x. - Stefano Spezia, Apr 18 2022
MAPLE
with(combinat): 3, seq(2*fibonacci(n+1), n=2..40); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
Join[{3}, Table[2 Fibonacci[n + 1], {n, 2, 50}]] (* Vincenzo Librandi, Oct 07 2018 *)
CoefficientList[Series[(x^2-x-3) / (x^2+x-1), {x, 0, 50}], x] (* Stefano Spezia, Oct 07 2018 *)
PROG
(PARI) Vec(x*(3+x-x^2) / (1-x-x^2) + O(x^50)) \\ Colin Barker, Jan 29 2017
(Magma) [3] cat [2*Fibonacci(n+1): n in [2..50]]; // Vincenzo Librandi, Oct 07 2018
(GAP) Concatenation([3], List([2..40], n->2*Fibonacci(n+1))); # Muniru A Asiru, Oct 07 2018
CROSSREFS
Cf. A068928 for incongruent tilings, A068920 for more info. First column of A272472.
Essentially the same as A006355.
Essentially the same as A078642. - Georg Fischer, Oct 06 2018
Sequence in context: A214289 A310005 A355325 * A375382 A032408 A347567
KEYWORD
easy,nonn
AUTHOR
Dean Hickerson, Mar 11 2002
STATUS
approved