[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the largest number whose product of decimal digits equals n^n.
3

%I #15 Aug 13 2017 02:30:48

%S 22,333,22222222,55555,333333222222,7777777,222222222222222222222222,

%T 333333333333333333,55555555552222222222,0,

%U 333333333333222222222222222222222222,0,7777777777777722222222222222

%N a(n) is the largest number whose product of decimal digits equals n^n.

%C No digit=1 is permitted to avoid infinite number of solutions; a(n)=0 if A067734(n^n)=0.

%H Chai Wah Wu, <a href="/A068186/b068186.txt">Table of n, a(n) for n = 2..100</a>

%F a(n) is obtained as prime factors of n^n concatenated in order of magnitude and with repetitions; a(n)=0 if n has p > 7 prime factors.

%e n=10, 10^10=10000000000, a(5)=55555555552222222222.

%o (Python)

%o from sympy import factorint

%o def A068186(n):

%o if n == 1:

%o return 1

%o pf = factorint(n)

%o ps = sorted(pf.keys(),reverse=True)

%o if ps[0] > 7:

%o return 0

%o s = ''

%o for p in ps:

%o s += str(p)*(n*pf[p])

%o return int(s) # _Chai Wah Wu_, Aug 12 2017

%Y Cf. A000312, A001222, A002473, A067734, A068183-A068187, A068189-A068191.

%K base,nonn

%O 2,1

%A _Labos Elemer_, Feb 19 2002

%E a(12) corrected by _Chai Wah Wu_, Aug 12 2017