[go: up one dir, main page]

login
A067886
Numbers k such that 2^k+1 and 2^k-1 have the same number of distinct prime factors.
5
2, 3, 6, 9, 11, 14, 15, 18, 21, 23, 27, 29, 33, 42, 47, 51, 53, 54, 57, 69, 71, 73, 74, 81, 82, 86, 95, 101, 105, 111, 113, 114, 115, 121, 129, 130, 138, 141, 142, 165, 167, 169, 179, 181, 199, 203, 209, 213, 230, 233, 235, 243, 250, 255, 258, 277, 279, 306, 307
OFFSET
1,1
COMMENTS
Numbers k such that omega(2^k+1) = omega(2^k-1).
LINKS
MATHEMATICA
sndpQ[n_]:=Module[{c=2^n}, PrimeNu[c+1]==PrimeNu[c-1]]; Select[Range[ 250], sndpQ] (* Harvey P. Dale, Feb 04 2016 *)
PROG
(PARI) isok(k) = omega(2^k-1) == omega(2^k+1); \\ Michel Marcus, Feb 13 2020
(Magma) [k: k in [2..307] | #PrimeDivisors(2^k-1) eq #PrimeDivisors(2^k+1) ]; // Marius A. Burtea, Feb 13 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 02 2002
EXTENSIONS
More terms from Rick L. Shepherd, May 14 2002
More terms from Amiram Eldar, Feb 13 2020
STATUS
approved