[go: up one dir, main page]

login
A067784
Numbers k such that prime(k+1)^4 == prime(k)^4 (mod k).
1
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 29, 30, 40, 45, 48, 56, 60, 64, 65, 80, 92, 105, 111, 120, 144, 146, 160, 180, 182, 212, 232, 240, 246, 336, 340, 344, 348, 360, 376, 439, 470, 476, 580, 624, 680, 709, 819, 832, 914, 984, 1020, 1058, 1290, 1341, 1352
OFFSET
1,2
LINKS
MAPLE
q:= 2: count:= 0:
for n from 1 while count < 100 do
p:= q; q:= nextprime(p);
if q^4 - p^4 mod n = 0 then count:= count+1; A[count]:= n; fi;
od:
seq(A[i], i=1..count); # Robert Israel, May 16 2017
MATHEMATICA
Select[Range[100], Mod[Prime[# + 1]^4 , #] == Mod[Prime[#]^4, #] &] (* G. C. Greubel, May 17 2017 *)
CROSSREFS
Sequence in context: A336505 A303704 A067939 * A324107 A018744 A018478
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 06 2002
STATUS
approved