[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066543
Number of spanning trees in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n).
0
782757789696, 5976745079881894723584, 29514790517935282585600000000000000, 95296975201657487970461602120230307486331043840000, 202142993853936783750487849288950496428731602354031286611374533246976
OFFSET
3,1
FORMULA
a(n) = 2^(3*n^2-1) * A212800(n). - Sean A. Irvine, Oct 25 2023
EXAMPLE
NumberOfSpanningTrees(L(C_3 x C_3)) = 782757789696
MATHEMATICA
NumberOfSpanningTrees[LineGraph[GraphProduct[Cycle[n], Cycle[n]]]] (* First load package DiscreteMath`Combinatorica` *)
CROSSREFS
Cf. A212800.
Sequence in context: A017531 A348204 A233806 * A323533 A233800 A162027
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Dean Hickerson, Jan 14 2002
a(7) from Sean A. Irvine, Oct 25 2023
STATUS
approved