[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066384
a(n) = Sum_{k=0..n} binomial(2^n,k).
4
1, 3, 11, 93, 2517, 242825, 83278001, 100224990433, 423203101008289, 6320756952791172417, 337588530920463407788161, 65183827170777713040896325889, 45946801057461743411385200045344257, 119218150804947710897541255907308439677953, 1146646393160535279886911833912593527834996340737
OFFSET
0,2
LINKS
FORMULA
G.f.: Sum_{n>=0} log(1+2^n*x)^n/((1-2^n*x)*n!). - Paul D. Hanna and Vladeta Jovovic, Jan 15 2008
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
MAPLE
A066384:= n-> add(binomial(2^n, k), k=0..n); seq(A066384(n), n=0..20); # G. C. Greubel, Mar 15 2021
MATHEMATICA
Table[Sum[Binomial[2^n, k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(2^n, k)); \\ Harry J. Smith, Feb 12 2010; modified by G. C. Greubel, Mar 15 2021
(Sage) [sum(binomial(2^n, k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Mar 15 2021
(Magma) [(&+[Binomial(2^n, k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Mar 15 2021
CROSSREFS
Sequence in context: A231066 A091547 A063854 * A328810 A120587 A086914
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 23 2001
STATUS
approved