[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066087
a(n) = gcd(sigma(n), phi(n)) - gcd(sigma(rad(n)), phi(rad(n))); rad = A007947.
6
0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, -1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 2, 1, -1, 0, -4, 0, 4, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -4, -2, 0, 0, 0, 0, -1, 0, 0, -4, 0, 0, 0, 18, 0, -2, 0, 2, 0, 0, 0, 2, 0, -3, 8, -1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 12, -6
OFFSET
1,12
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
A009223(n) - A066086(n) = gcd(sigma(n), phi(n)) - gcd(sigma(A007947(n)), phi(A007947(n))).
MATHEMATICA
Table[GCD[DivisorSigma[1, n], EulerPhi@ n] - GCD[DivisorSigma[1, #], EulerPhi@ #] &[Times @@ FactorInteger[n][[All, 1]]], {n, 120}] (* Michael De Vlieger, Feb 19 2017 *)
PROG
(PARI) rad(f)=for(i=1, #f~, f[i, 2]=1); f
g(f)=gcd(sigma(f), eulerphi(f))
a(n)=my(f=factor(n), k=rad(f)); g(f)-g(k) \\ Charles R Greathouse IV, Dec 09 2013
KEYWORD
sign
AUTHOR
Labos Elemer, Dec 04 2001
STATUS
approved