[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065897
The a(n)-th composite number is twice the n-th prime.
3
1, 2, 5, 7, 13, 16, 22, 25, 31, 41, 43, 52, 59, 62, 69, 78, 87, 91, 101, 107, 111, 120, 127, 137, 149, 155, 159, 166, 170, 177, 199, 206, 215, 218, 235, 239, 248, 259, 266, 277, 286, 289, 306, 309, 316, 319, 339, 359, 366, 369, 375, 386, 389, 406, 416, 426, 438
OFFSET
1,2
COMMENTS
Also the least k such that the n-th primorial (A002110) is a divisor of the k-th compositorial (A036691). - Reinhard Zumkeller, Sep 03 2002
LINKS
FORMULA
a(n) = 2*prime(n) - (pi(2*prime(n))) - 1, where pi = A000720.
EXAMPLE
a(7) = 22 because twice the 7th prime (2*17 = 34) is the 22nd composite number: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34.
MAPLE
A065897:=n->2*ithprime(n)-(numtheory[pi](2*ithprime(n)))-1: seq(A065897(n), n=1..100); # Wesley Ivan Hurt, Sep 16 2017
MATHEMATICA
Table[2*Prime[n]-(PrimePi[2*Prime[n]])-1, {n, 128}]
PROG
(PARI) { for (n=1, 1000, f=2*prime(n); a=f - primepi(f) - 1; write("b065897.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 04 2009
(Magma)
A065897:= func< n | 2*NthPrime(n) -1 -#PrimesUpTo(2*NthPrime(n)) >;
[A065897(n): n in [1..130]]; // G. C. Greubel, Aug 24 2024
(SageMath)
def A065897(n): return 2*nth_prime(n) -prime_pi(2*nth_prime(n)) -1
[A065897(n) for n in range(1, 131)] # G. C. Greubel, Aug 24 2024
CROSSREFS
Cf. A000720, A002110, A002808, A036691, A100484 (even semiprimes).
Sequence in context: A272193 A186131 A284191 * A293762 A161889 A275284
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Nov 28 2001
STATUS
approved