[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064306
Convolution of A052701 (Catalan numbers multiplied by powers of 2) with powers of -1.
5
1, 1, 7, 33, 191, 1153, 7295, 47617, 318463, 2170881, 15028223, 105365505, 746651647, 5339185153, 38478839807, 279201841153, 2037998419967, 14954803494913, 110255315877887, 816299567480833, 6066679566041087
OFFSET
0,3
LINKS
W. Lang, On polynomials related to derivatives of the generating function of Catalan numbers, Fib. Quart. 40,4 (2002) 299-313; Eq.(31) with lambda=-1/2.
FORMULA
a(n) = (-1)^n*Sum_{k=0,..,n} (C(k)/(-1/2)^k) with C(k)=A000108(k) (Catalan).
a(n) = -a(n-1) + C(n)*2^n, n >= 0, a(-1) := 0, with C(n)=A000108(n).
G.f.: A(2*x)/(1+x), with A(x) g.f. of Catalan numbers A000108.
Recurrence: (n+1)*a(n) = (7*n-5)*a(n-1) + 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Dec 09 2013
a(n) ~ 2^(3*n+3)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 09 2013
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-8*x])/(4*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 09 2013 *)
Table[FullSimplify[2^(n+1)*(2*n+2)! * Hypergeometric2F1Regularized[1, n+3/2, n+3, -8]/(n+1)! + (-1)^n/2], {n, 0, 20}] (* Vaclav Kotesovec, Dec 09 2013 *)
Table[(-1)^n*Sum[(-2)^k * CatalanNumber[k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Jan 27 2017 *)
PROG
(Sage)
def A064306():
f, c, n = 1, 1, 1
while True:
yield f
n += 1
c = c * (8*n - 12) // n
f = c - f
a = A064306()
print([next(a) for _ in range(21)]) # Peter Luschny, Nov 30 2016
(PARI) for(n=0, 25, print1((-1)^n*sum(k=0, n, (-2)^k*binomial(2*k, k)/(k+1)), ", ")) \\ G. C. Greubel, Jan 27 2017
CROSSREFS
Sequence in context: A275860 A054256 A085636 * A292427 A333565 A215125
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 13 2001
STATUS
approved