[go: up one dir, main page]

login
Zsigmondy numbers for a = 5, b = 1: Zs(n, 5, 1) is the greatest divisor of 5^n - 1^n (A024049) that is relatively prime to 5^m - 1^m for all positive integers m < n.
9

%I #12 Nov 13 2016 14:33:11

%S 4,3,31,13,781,7,19531,313,15751,521,12207031,601,305175781,13021,

%T 315121,195313,190734863281,5167,4768371582031,375601,196890121,

%U 8138021,2980232238769531,390001,95397958987501,203450521

%N Zsigmondy numbers for a = 5, b = 1: Zs(n, 5, 1) is the greatest divisor of 5^n - 1^n (A024049) that is relatively prime to 5^m - 1^m for all positive integers m < n.

%C By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

%H K. Zsigmondy, <a href="http://dx.doi.org/10.1007/BF01692444">Zur Theorie der Potenzreste</a>, Monatsh. f. Math. 3 (1892) 265-284.

%Y Cf. A024049, A064078, A064079, A064080, A064082, A064083.

%K nonn

%O 1,1

%A _Jens Voß_, Sep 04 2001

%E More terms from _Vladeta Jovovic_, Sep 06 2001

%E Definition corrected by _Jerry Metzger_, Nov 04 2009