[go: up one dir, main page]

login
A053641
Rotate n one binary digit to the right, drop leading zeros, then rotate one binary digit to the left.
2
1, 1, 3, 1, 5, 3, 7, 1, 9, 3, 11, 5, 13, 7, 15, 1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31, 1, 33, 3, 35, 5, 37, 7, 39, 9, 41, 11, 43, 13, 45, 15, 47, 17, 49, 19, 51, 21, 53, 23, 55, 25, 57, 27, 59, 29, 61, 31, 63, 1
OFFSET
1,3
FORMULA
a(n) = A006257(A038572(n)).
a(n) = n if n odd, n - 2^k + 1 if n even and 2^k <= n < 2^(k+1).
EXAMPLE
a(60) = 29 because starting with 111100 the right rotation produces 011110, written as 11110 (i.e., 30) and the left rotation produces 11101 (i.e., 29).
MATHEMATICA
rtt[f_, n_] := FromDigits[f[IntegerDigits[n, 2]], 2];
Array[rtt[RotateLeft, rtt[RotateRight, #]]&, 100] (* Paolo Xausa, Jan 16 2024 *)
PROG
(PARI) a(n) = if(bitand(n, 1), n, n+1 - 1<<logint(n, 2)); \\ Kevin Ryde, Jan 13 2024
CROSSREFS
Cf. A053642 (left then right).
Sequence in context: A116528 A357111 A081431 * A161825 A099551 A211206
KEYWORD
nonn,base,easy
AUTHOR
Henry Bottomley, Mar 22 2000
STATUS
approved