[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+1) is the smallest prime ending with a(n), where a(1)=1.
16

%I #29 Dec 30 2023 23:49:05

%S 1,11,211,4211,34211,234211,4234211,154234211,3154234211,93154234211,

%T 2093154234211,42093154234211,342093154234211,11342093154234211,

%U 3111342093154234211,63111342093154234211,2463111342093154234211,232463111342093154234211

%N a(n+1) is the smallest prime ending with a(n), where a(1)=1.

%H <a href="/A053582/b053582.txt">Table of n, a(n) for n = 1..501</a>

%e The least prime ending with seed 1 is 11; the least prime ending with 11 is 211; the least prime ending with 211 is 4211. - _Clark Kimberling_, Sep 17 2015

%p R:= 1: v:= 1:

%p for iter from 1 to 30 do

%p d:= ilog10(v)+1;

%p for x from v+10^d by 10^d do

%p if isprime(x) then R:= R, x; v:= x; break fi

%p od

%p od:

%p R; # _Robert Israel_, Sep 24 2020

%t f[n_] := f[n] = Block[{j = f[n - 1], k = 1, l = Floor[Log[10, f[n - 1]] + 1]}, While[m = k*10^l + j; ! PrimeQ@ m, k++ ]; m]; f[1] = 1; Array[f, 17]

%t nxt[n_]:=Module[{k=1,p=10^IntegerLength[n]},While[!PrimeQ[k*p+n],k++];k*p+n]; NestList[nxt,1,20] (* _Harvey P. Dale_, Jul 14 2016 *)

%o (Python)

%o from sympy import isprime

%o from itertools import count, islice

%o def agen(an=1): # generator of terms

%o while True:

%o yield an

%o pow10 = 10**len(str(an))

%o for t in count(pow10+an, step=pow10):

%o if isprime(t):

%o an = t

%o break

%o print(list(islice(agen(), 18))) # _Michael S. Branicky_, Jun 23 2022

%Y Cf. A053583, A053584, A069612.

%K base,nonn

%O 1,2

%A _G. L. Honaker, Jr._, Jan 18 2000

%E a(14)-a(17) corrected by _Robert G. Wilson v_, Dec 07 2010