[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053440
Number of k-simplices in the first derived complex of the standard triangulation of an n-simplex. Equivalently, T(n,k) is the number of ascending chains of length k+1 of nonempty subsets of the set {1, 2, ..., n+1}.
6
1, 3, 2, 7, 12, 6, 15, 50, 60, 24, 31, 180, 390, 360, 120, 63, 602, 2100, 3360, 2520, 720, 127, 1932, 10206, 25200, 31920, 20160, 5040, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000
OFFSET
0,2
COMMENTS
T(n,k) is the number of length k+1 sequences of nonempty mutually disjoint subsets of {1,2,...,n+1}. The e.g.f. for the column corresponding to k is exp(x)*(exp(x)-1)^(k+1). - Geoffrey Critzer, Dec 20 2011
LINKS
F. Brenti and V. Welker, f-vectors of barycentric subdivisions Math. Z., 259(4), 849-865, 2008.
FORMULA
T(0,k) = delta(0,k), T(n,k) = delta(0,k) + (k+1)(T(n-1,k-1) + (k+2)T(n-1,k)).
E.g.f.: exp(x)*(exp(x)-1)/(1-y*(exp(x)-1)). - Vladeta Jovovic, Apr 13 2003
T(n,k) = Sum_{i = 0..n} binomial(n+1,i+1)*(k+1)!*Stirling2(i+1,k+1) = (k+1)!*Stirling2(n+2,k+2) (Brenti and Welker). Row sums are A002050. - Peter Bala, Jul 12 2014
EXAMPLE
T(2,1) = 12 because there are 12 such length 2 sequences of subsets of {1,2,3}: ({1},{2}), ({1},{3}), ({2},{3}), ({1},{2,3}), ({2},{1,3}), ({3},{1,2}) with two orderings for each. - Geoffrey Critzer, Dec 20 2011
Triangle begins:
1
3 2
7 12 6
15 50 60 24
31 180 390 360 120
MAPLE
with(combinat):
a := (n, k) -> (k+1)!*stirling2(n+2, k+2):
seq(print(seq(a(n, k), k = 0..n)), n = 0..10);
MATHEMATICA
nn = 5; a = Exp[ x] - 1 ; f[list_] := Select[list, # > 0 &]; Map[f, Transpose[Table[Drop[Range[0, nn]!CoefficientList[Series[a^k Exp[x], {x, 0, nn}], x], 1], {k, 1, 5}]]] // Grid (* Geoffrey Critzer, Dec 20 2011 *)
Table[(k+1)!*StirlingS2[n+2, k+2], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2017 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1((k+1)!*stirling(n+2, k+2, 2), ", "))) \\ G. C. Greubel, Nov 19 2017
CROSSREFS
Cf. A028246.
Cf. A002050 (row sums), A019538.
Sequence in context: A182871 A143329 A365227 * A329724 A143332 A255919
KEYWORD
nonn,easy,tabl,nice
AUTHOR
Rob Arthan, Jan 12 2000
EXTENSIONS
More terms from James A. Sellers, Jan 14 2000
STATUS
approved