[go: up one dir, main page]

login
A053309
Partial sums of A053308.
5
1, 10, 56, 231, 782, 2300, 6085, 14820, 33775, 72905, 150438, 298925, 575333, 1077748, 1972851, 3540913, 6249235, 10871723, 18683233, 31775031, 53566369, 89633545, 149052839, 246575109, 406146248, 666605513, 1090907965
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-44,111,-174,168,-84,-6,39,-26,8,-1).
FORMULA
a(n) = Sum_{i=0..floor(n/2)} C(n+9-i, n-2i), n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+8,8); n >= 0; a(-1)=0.
G.f.: 1/((x^2 + x - 1)*(x-1)^9). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
MATHEMATICA
Table[Sum[Binomial[n+9-j, n-2j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)
PROG
(PARI) for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+9-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018
(Magma) [(&+[Binomial(n+9-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Mar 06 2000
STATUS
approved