[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053070
Primes p such that p-6, p and p+6 are consecutive primes.
6
53, 157, 173, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4457, 4597, 4657, 4993, 5107, 5113, 5303, 5387, 5393, 5563, 5807, 6073, 6263
OFFSET
1,1
COMMENTS
Balanced primes separated from the next lower and next higher prime neighbors by 6.
Subset of A006489. - R. J. Mathar, Apr 11 2008
Subset of A006562. - Zak Seidov, Feb 14 2013
a(n) == {3,7} mod 10. - Zak Seidov, Feb 14 2013
Minimal difference is 6: a(5) - a(4) = 263 - 257, a(20) - a(19) = 1753 - 1747, ... . - Zak Seidov, Feb 14 2013
LINKS
FORMULA
a(n) = A047948(n) + 6. - R. J. Mathar, Apr 11 2008
EXAMPLE
157 is separated from both the next lower prime, 151 and the next higher prime, 163, by 6.
MAPLE
for i from 1 by 1 to 800 do if ithprime(i+1) = ithprime(i) + 6 and ithprime(i+2) = ithprime(i) + 12 then print(ithprime(i+1)); fi; od; # Zerinvary Lajos, Apr 27 2007
MATHEMATICA
lst={}; Do[p=Prime[n]; If[p-Prime[n-1]==Prime[n+1]-p==6, AppendTo[lst, p]], {n, 2, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, May 20 2010 *)
Transpose[Select[Partition[Prime[Range[1000]], 3, 1], Differences[#]=={6, 6}&]][[2]] (* Harvey P. Dale, Oct 11 2012 *)
CROSSREFS
Cf. A047948, A006489, A006562. - Zak Seidov, Feb 14 2013
Sequence in context: A342450 A160058 A353136 * A140655 A142508 A279259
KEYWORD
easy,nonn
AUTHOR
Harvey P. Dale, Feb 25 2000
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Zak Seidov, Apr 09 2008
STATUS
approved