Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 10 2020 22:21:52
%S 0,1,2,5,16,56,221,900,3839,16752,74701,338327,1553181,7208191,
%T 33768389,159463655,758291989,3627890869,17450572584,84342086908,
%U 409394388458,1994883122360,9754673396640,47850963112328,235413886888082,1161267995487057,5742484341773444
%N Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.
%H Andrew Howroyd, <a href="/A052815/b052815.txt">Table of n, a(n) for n = 0..200</a>
%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=780">Encyclopedia of Combinatorial Structures 780</a>
%H Maplesoft, <a href="https://www.maplesoft.com/support/help/Maple/view.aspx?path=examples%2fcombstruct_grammars">Combstruct grammars</a>.
%F G.f.: 1 - x/g(x) where g(x) is the g.f. of A052818. - _Andrew Howroyd_, Aug 10 2020
%p spec := [S,{B=Prod(C,Z),C=Sequence(S),S=Cycle(B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
%o (PARI) \\ CIK (necklace, indistinct, unlabeled) in Transforms (2).
%o CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
%o seq(n)={my(p=O(x)); for(n=1, n, p=CIK(x/(1-p), n)); Vec(p, -(n+1))} \\ _Andrew Howroyd_, Aug 10 2020
%Y Cf. A052818.
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E Terms a(21) and beyond from _Andrew Howroyd_, Aug 10 2020