[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 2*x^2/(1 - 2*x - 2*x^2 + sqrt(1 - 4*x - 4*x^2)).
10

%I #52 Jan 30 2020 21:29:14

%S 0,0,1,2,7,24,89,342,1355,5492,22669,94962,402703,1725424,7458065,

%T 32482798,142414867,628037612,2783922197,12397342698,55436525591,

%U 248819728360,1120584933401,5062273384422,22933667676187

%N Expansion of 2*x^2/(1 - 2*x - 2*x^2 + sqrt(1 - 4*x - 4*x^2)).

%C Number of underdiagonal paths from (0,0) to the line x=n-2, using only steps R=(1,0), V=(0,1) and D=(2,1). E.g., a(4)=7 because we have RR, RRV, RVR, D, RVRV, RRVV and DV. - _Emeric Deutsch_, Dec 21 2003

%H Muniru A Asiru, <a href="/A052705/b052705.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=660">Encyclopedia of Combinatorial Structures 660</a>

%H C. Banderier and D. Merlini, <a href="http://algo.inria.fr/banderier/Papers/infjumps.ps">Lattice paths with an infinite set of jumps</a>, FPSAC02, Melbourne, 2002.

%H D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.4153/CJM-1997-015-x">On some alternative characterizations of Riordan arrays, Can. J. Math., 49 (2) (1997) 301-310.

%F D-finite with recurrence: a(1)=0, a(2)=1, a(3)=2, 4*(n+1)*a(n) + (10+8*n)*a(n+1) + (2+3*n)*a(n+2) + (-n-3)*a(n+3) = 0.

%F a(n+2) = Sum_{k=0..n} Sum_{j=0..n} C(j,n-j)*A001263(j,k). - _Paul Barry_, Jun 30 2009

%F a(n) = Sum_{j=1..floor(n/2)} C(2*n-2*j,n)*C(n,j-1)/(n-j). - _Vladimir Kruchinin_, Jan 16 2015

%F G.f.: A(x) satisfies A(x) = C(x*(1+A(x)))^2, where x*C(x) is g.f. of Catalan numbers. - _Vladimir Kruchinin_, Jan 16 2015

%F a(n) = C(2*n-2,n)*3F2((2-n)/2,(3-n)/2,-n;3/2-n,2-n;-1)/(n-1), n>1. - _Benedict W. J. Irwin_, Sep 13 2016

%F a(n) ~ 2^(n + 3/4) * (1 + sqrt(2))^(n - 5/2) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Sep 03 2019

%p spec := [S,{S=Prod(B,B),C=Prod(S,Z),B=Union(S,C,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t CoefficientList[Series[(2x^2)/(1-2x-2x^2+Sqrt[1-4x-4x^2]),{x,0,30}],x] (* _Harvey P. Dale_, Dec 16 2014 *)

%t Join[{0,0},Table[(Binomial[2(m-1),m]HypergeometricPFQ[{(2-m)/2,(3-m)/2,-m},{3/2-m,2-m},-1])/(m-1),{m,2,20}]] (* _Benedict W. J. Irwin_, Sep 13 2016 *)

%o (Maxima)

%o a(n):=(sum(binomial(2*n-2*j,n)*binomial(n,j-1)/(n-j),j,1,n/2)); /* _Vladimir Kruchinin_, Jan 16 2015 */

%Y Row sums of A071945, cf. A000108.

%K easy,nonn

%O 0,4

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _Emeric Deutsch_, Mar 07 2004