[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052389
Number of 4-element intersecting families (with not necessarily distinct sets) of an n-element set.
1
0, 1, 9, 95, 1286, 20681, 360964, 6452825, 114920766, 2018035121, 34864971944, 593281456505, 9965368457746, 165615181710161, 2728984827320124, 44665923097267385, 727216852411490726, 11791672548220250801
OFFSET
0,3
LINKS
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
Index entries for linear recurrences with constant coefficients, signature (83, -3052, 65670, -919413, 8804499, -58966886, 277278100, -904270136, 1982352768, -2749917312, 2142305280, -696729600).
FORMULA
a(n) = (16^n - 6*12^n + 12*10^n - 9^n-10*8^n + 15*7^n - 24*6^n + 19*5^n + 5*4^n - 11*3^n + 6*2^n - 6)/24.
G.f.: x * (118224000*x^10 - 215558352*x^9 + 171543508*x^8 - 77761264*x^7 + 22230235*x^6 - 4199119*x^5 + 532266*x^4 - 44801*x^3 + 2400*x^2 - 74*x + 1) / ( (x-1) * (2*x-1) * (3*x-1) * (4*x-1) * (5*x-1) * (6*x-1) * (7*x-1) * (8*x-1) * (9*x-1) * (10*x-1) * (12*x-1) * (16*x-1) ). - Colin Barker, Jul 30 2012
MATHEMATICA
Table[(16^n - 6*12^n + 12*10^n - 9^n-10*8^n + 15*7^n - 24*6^n + 19*5^n + 5*4^n - 11*3^n + 6*2^n - 6)/24, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
PROG
(PARI) for(n=0, 50, print1((16^n - 6*12^n + 12*10^n - 9^n-10*8^n + 15*7^n - 24*6^n + 19*5^n + 5*4^n - 11*3^n + 6*2^n - 6)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
(Magma) [(16^n - 6*12^n + 12*10^n - 9^n-10*8^n + 15*7^n - 24*6^n + 19*5^n + 5*4^n - 11*3^n + 6*2^n - 6)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Mar 11 2000
STATUS
approved