[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integers from 1 to 10^n-1 that lack 0 as a digit.
12

%I #33 Mar 12 2024 14:19:19

%S 0,9,90,819,7380,66429,597870,5380839,48427560,435848049,3922632450,

%T 35303692059,317733228540,2859599056869,25736391511830,

%U 231627523606479,2084647712458320,18761829412124889,168856464709124010,1519708182382116099,13677373641439044900

%N Number of integers from 1 to 10^n-1 that lack 0 as a digit.

%H Vincenzo Librandi, <a href="/A052386/b052386.txt">Table of n, a(n) for n = 0..500</a>

%H Peter D. Loly and Ian D. Cameron, <a href="https://arxiv.org/abs/2008.11020">Frierson's 1907 Parameterization of Compound Magic Squares Extended to Orders 3^L, L = 1, 2, 3, ..., with Information Entropy</a>, arXiv:2008.11020 [math.HO], 2020.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-9).

%F a(n) = 9*a(n-1) + 9.

%F a(n) = 9*(9^n-1)/8 = sum_{j=1..n} 9^j = a(n-1)+9^n = 9*A002452(n) = A002452(n+1)-1; write A000918(n+1) in base 2 and read as if written in base 9. - _Henry Bottomley_, Aug 30 2001

%F a(n) = 10*a(n-1)-9*a(n-2). G.f.: 9*x / ((x-1)*(9*x-1)). - _Colin Barker_, Sep 26 2013

%e For n=2, the numbers from 1 to 99 which *have* 0 as a digit are the 9 numbers 10, 20, 30, ..., 90. So a(1) = 99 - 9 = 90.

%t Table[9(9^n - 1)/8, {n, 0, 20}]

%t LinearRecurrence[{10,-9},{0,9},30] (* _Harvey P. Dale_, Mar 22 2019 *)

%o (Magma) [9*(9^n-1)/8: n in [0..20]]; // _Vincenzo Librandi_, Jul 04 2011

%o (PARI) a(n)=9^(n+1)\8 \\ _Charles R Greathouse IV_, Aug 25 2014

%Y Cf. A024101, A052379.

%Y Row n=9 of A228275.

%K easy,nonn,base

%O 0,2

%A _Odimar Fabeny_, Mar 10 2000

%E More terms and revised description from _James A. Sellers_, Mar 13 2000

%E More terms and revised description from _Robert G. Wilson v_, Apr 14 2003

%E More terms from _Colin Barker_, Sep 26 2013