[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052385
a(n)*10^n are the denominators of the greedy alternating Egyptian fraction expansion of Pi - 3 of the form Sum_{n>=0} (-1)^n / (a(n)*10^n).
1
7, 79, 7498, 5830114, 8652011824287, 13597204960705459608723126, 34810495772672927583903155370200945603822050731477, 1443540369391032855921234984363709782471552979298036142515612532020988429757781997263178546460721652
OFFSET
0,1
LINKS
FORMULA
a(n) = floor((-1)^n/(s(n-1)*10^n)), where s(n) = Pi - 3 - Sum_{k=0..n} (-1)^k/(a(k)*10^k).
EXAMPLE
Pi = 3 + 1/7 - 1/(10 * 79) + 1/(10^2 * 7498) - 1/(10^3 * 5830114) + ...
MATHEMATICA
s={}; x = Pi - 3; Do[a = Floor[1/((-10)^k * x)]; AppendTo[s, a]; x-=1/((-10)^k*a), {k, 0, 7}]; s (* Amiram Eldar, Jan 23 2019 *)
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Boris Gourevitch (sai1042(AT)ensai.fr), Mar 10 2000
EXTENSIONS
a(6)-a(10) from Amiram Eldar, Jan 23 2019
STATUS
approved