[go: up one dir, main page]

login
A051170
T(n,5), array T as in A051168; a count of Lyndon words; aperiodic necklaces with 5 black beads and n-5 white beads.
4
0, 1, 3, 7, 14, 25, 42, 66, 99, 143, 200, 273, 364, 476, 612, 775, 969, 1197, 1463, 1771, 2125, 2530, 2990, 3510, 4095, 4750, 5481, 6293, 7192, 8184, 9275, 10472, 11781, 13209, 14763, 16450, 18278, 20254, 22386, 24682
OFFSET
5,3
FORMULA
G.f.: -x^6*(x^2-x+1) / ((x-1)^5*(x^4+x^3+x^2+x+1)). - Colin Barker, Jun 05 2013
a(n) = floor(C(n,5)/n). - Alois P. Heinz, Jun 05 2013
G.f.: x^5/5 * (1/(1-x)^5 - 1/(1-x^5)). - Herbert Kociemba, Oct 16 2016
MATHEMATICA
Table[Floor[Binomial[n, 5]/n], {n, 5, 50}] (* G. C. Greubel, Nov 26 2017 *)
PROG
(PARI) for(n=5, 30, print1(floor(binomial(n, 5)/n), ", ")) \\ G. C. Greubel, Nov 26 2017
(Magma) [ Floor(Binomial(n, 5)/n): n in [5..30]]; // G. C. Greubel, Nov 26 2017
CROSSREFS
Cf. A000031, A001037, A051168. Same as A011795(n-1).
First differences of A036837.
Sequence in context: A089240 A057524 A293467 * A011795 A265252 A193911
KEYWORD
nonn,easy
STATUS
approved