Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #65 Sep 16 2024 14:45:27
%S 1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,18,20,21,22,24,25,27,28,30,32,33,
%T 35,36,40,42,44,45,48,49,50,54,55,56,60,63,64,66,70,72,75,77,80,81,84,
%U 88,90,96,98,99,100,105,108,110,112,120,121,125,126,128,132,135,140
%N 11-smooth numbers: numbers whose prime divisors are all <= 11.
%C A155182 is a finite subsequence. - _Reinhard Zumkeller_, Jan 21 2009
%C From _Federico Provvedi_, Jul 09 2022: (Start)
%C In general, if p=A000040(k) is the k-th prime, with k>1, p-smooth numbers are also those positive integers m such that A000010(A002110(k))*m == A000010(A002110(k)*m).
%C With k=5, p = A000040(5) = 11, the primorial p# = A002110(5) = 2310, and its Euler totient is A000010(2310) = 480, so the 11-smooth numbers are also those positive integers m such that 480*m == A000010(2310*m). (End)
%H David A. Corneth, <a href="/A051038/b051038.txt">Table of n, a(n) for n = 1..10000</a> (First 5000 terms from Reinhard Zumkeller)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>.
%F Sum_{n>=1} 1/a(n) = Product_{primes p <= 11} p/(p-1) = (2*3*5*7*11)/(1*2*4*6*10) = 77/16. - _Amiram Eldar_, Sep 22 2020
%t mx = 150; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}] (* _Robert G. Wilson v_, Aug 17 2012 *)
%t aQ[n_]:=Max[First/@FactorInteger[n]]<=11; Select[Range[140],aQ[#]&] (* _Jayanta Basu_, Jun 05 2013 *)
%t Block[{k=5,primorial:=Times@@Prime@Range@#&},Select[Range@200,#*EulerPhi@primorial@k==EulerPhi[#*primorial@k]&]] (* _Federico Provvedi_, Jul 09 2022 *)
%o (PARI) test(n)=m=n; forprime(p=2,11, while(m%p==0,m=m/p)); return(m==1)
%o for(n=1,200,if(test(n),print1(n",")))
%o (PARI) list(lim,p=11)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ _Charles R Greathouse IV_, Apr 16 2020
%o (Magma) [n: n in [1..150] | PrimeDivisors(n) subset PrimesUpTo(11)]; // _Bruno Berselli_, Sep 24 2012
%o (Python)
%o import heapq
%o from itertools import islice
%o from sympy import primerange
%o def agen(p=11): # generate all p-smooth terms
%o v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
%o while True:
%o v = heapq.heappop(h)
%o if v != oldv:
%o yield v
%o oldv = v
%o for p in psmooth_primes:
%o heapq.heappush(h, v*p)
%o print(list(islice(agen(), 67))) # _Michael S. Branicky_, Nov 20 2022
%o (Python)
%o from sympy import integer_log, prevprime
%o def A051038(n):
%o def bisection(f,kmin=0,kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
%o def f(x): return n+x-g(x,11)
%o return bisection(f,n,n) # _Chai Wah Wu_, Sep 16 2024
%Y Subsequence of A033620.
%Y For p-smooth numbers with other values of p, see A003586, A051037, A002473, A080197, A080681, A080682, A080683.
%Y A000010, A002110.
%K easy,nonn
%O 1,2
%A _Eric W. Weisstein_