[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050971
4*Denominator of S(n)/Pi^n, where S(n) = Sum_{k=-inf..+inf} ((4k+1)^(-n)).
12
1, 2, 8, 24, 384, 240, 46080, 40320, 2064384, 725760, 3715891200, 159667200, 392398110720, 12454041600, 1428329123020800, 20922789888000, 274239191619993600, 711374856192000, 1678343852714360832000
OFFSET
1,2
COMMENTS
Reduced denominators of the Favard constants.
LINKS
Theo Niessink, Table of n, a(n) for n = 1..200 (uploaded again by Georg Fischer, Feb 20 2019)
N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003.
N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
Maths StackExchange, Can this equation be written in terms of x?, Apr 22 2021.
Eric Weisstein's World of Mathematics, Favard Constants.
FORMULA
There is a simple formula in terms of Euler and Bernoulli numbers.
EXAMPLE
The first few values of S(n)/Pi^n are 1/4, 1/8, 1/32, 1/96, 5/1536, 1/960, ...
MAPLE
S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
S(n, k - 1) + S(n - 1, n - k) fi end: EZ := n -> S(n, n)/(2^n*n!):
A050971 := n -> denom(EZ(n-1)): seq(A050971(n), n=1..19); # Peter Luschny, Aug 02 2017
MATHEMATICA
s[n_] := Sum[(4*k + 1)^(-n), {k, -Infinity, Infinity}]; a[n_] := 4*s[n]/Pi^n ; a[1] = 1; Table[a[n], {n, 1, 19}] // Denominator (* Jean-François Alcover, Nov 05 2012 *)
a[n_] := 4*Sum[((-1)^k/(2*k+1))^n, {k, 0, Infinity}] /. Pi -> 1 // Denominator; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 20 2014 *)
Table[4/(2 Pi)^n LerchPhi[(-1)^n, n, 1/2], {n, 21}] // Denominator (* Eric W. Weisstein, Aug 02 2017 *)
Table[4/Pi^n If[Mod[n, 2] == 0, DirichletLambda, DirichletBeta][n], {n, 21}] // Denominator (* Eric W. Weisstein, Aug 02 2017 *)
CROSSREFS
Cf. A068205, A050970 (numerators).
Sequence in context: A047695 A093842 A331001 * A118855 A009515 A309088
KEYWORD
nonn,frac
EXTENSIONS
Entry revised by N. J. A. Sloane, Mar 24 2002
STATUS
approved