[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050219
Smaller of Smith brothers.
8
728, 2964, 3864, 4959, 5935, 6187, 9386, 9633, 11695, 13764, 16536, 16591, 20784, 25428, 28808, 29623, 32696, 33632, 35805, 39585, 43736, 44733, 49027, 55344, 56336, 57663, 58305, 62634, 65912, 65974, 66650, 67067, 67728, 69279, 69835, 73615, 73616, 74168
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert Israel)
Eric Weisstein's World of Mathematics, Smith Brothers.
MAPLE
issmith:= proc(n)
if isprime(n) then return false fi;
convert(convert(n, base, 10), `+`) = add(t[2]*convert(convert(t[1], base, 10), `+`), t=ifactors(n)[2])
end proc:
S:= select(issmith, {$4..10^5}):
sort(convert(S intersect map(`-`, S, 1), list)); # Robert Israel, Jan 15 2018
MATHEMATICA
smithQ[n_] := !PrimeQ[n] && Total[Flatten[IntegerDigits[Table[#[[1]], {#[[2]]}]& /@ FactorInteger[n]]]] == Total[IntegerDigits[n]];
Select[Range[10^5], smithQ[#] && smithQ[#+1]&] (* Jean-François Alcover, Jun 07 2020 *)
PROG
(PARI) isone(n) = {if (!isprime(n), f = factor(n); sumdigits(n) == sum(k=1, #f~, f[k, 2]*sumdigits(f[k, 1])); ); }
isok(n) = isone(n) && isone(n+1); \\ Michel Marcus, Jul 17 2015
(Python)
from sympy import factorint
from itertools import count, islice
def sd(n): return sum(map(int, str(n)))
def smith():
for k in count(1):
f = factorint(k)
if sum(f[p] for p in f) > 1 and sd(k) == sum(sd(p)*f[p] for p in f):
yield k
def agen():
prev = -1
for s in smith():
if s == prev + 1: yield prev
prev = s
print(list(islice(agen(), 38))) # Michael S. Branicky, Dec 23 2022
CROSSREFS
Sequence in context: A158395 A184077 A234652 * A051383 A293650 A233962
KEYWORD
nonn,base
EXTENSIONS
Offset corrected by Arkadiusz Wesolowski, May 08 2012
STATUS
approved