[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059543
Beatty sequence for log(3).
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
OFFSET
1,2
COMMENTS
Differs from A160542 at indices n=81, 91, 101, 111, 121, 131, 141, 151, 152, 161 etc. - R. J. Mathar, May 20 2009
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence.
FORMULA
a(n) = floor(n*A002391). - Paolo Xausa, Jul 05 2024
MAPLE
A059543 := proc(n)
floor(n*log(3)) ;
end proc:
seq(A059543(n), n=1..100) ; # R. J. Mathar, Jun 26 2023
MATHEMATICA
Floor[Range[100]*Log[3]] (* Paolo Xausa, Jul 05 2024 *)
PROG
(PARI) { default(realprecision, 100); b=log(3); for (n = 1, 2000, write("b059543.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
CROSSREFS
Beatty complement is A059544.
Cf. A002391 (log(3)).
Cf. A160542.
Sequence in context: A167520 A051882 A136002 * A160542 A241158 A241157
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved