[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059434
Triangle formed when cumulative boustrophedon transform is applied to 1, 1, 1, 1, ..., read by rows in natural order.
3
1, 1, 2, 1, 3, 6, 1, 7, 16, 26, 1, 27, 69, 118, 168, 1, 169, 455, 810, 1192, 1575, 1, 1576, 4343, 7920, 11952, 16153, 20355, 1, 20356, 56864, 105324, 161704, 222427, 284726, 347026, 1, 347027, 978779, 1832958, 2848841, 3970048, 5148119, 6346546, 7544974
OFFSET
0,3
FORMULA
From Petros Hadjicostas, Feb 16 2021: (Start)
T(i,j) = T(i,j-1) + Sum_{r=1..j} T(i-1,i-r) for i >= 1 and 1 <= j <= i with T(i,0) = b(i+1) for i >= 0, where b(i) = 1 for i >= 1. (The sequence b = (b(i): i >= 1) is the input sequence.)
T(i,j) = 2*T(i,j-1) - T(i,j-2) + T(i-1,i-j) for i >= 2 and 2 <= j <= i.
T(i,i) = A059430(i) = T(i+1,1) - 1 for i >= 0. (End)
EXAMPLE
Triangle T(i,j) (with rows i >= 0 and columns j = 0..i) begins:
1;
1, 2;
1, 3, 6;
1, 7, 16, 26;
1, 27, 69, 118, 168;
1, 169, 455, 810, 1192, 1575;
1, 1576, 4343, 7920, 11952, 16153, 20355;
... - Petros Hadjicostas, Feb 16 2021
MAPLE
# This is a modification of N. J. A. Sloane's program from A059429:
CBOUS2 := proc(a) local c, i, j, n, r: option remember: if whattype(a) <> list then RETURN([]): end if: n := min(nops(a), 60): for i from 0 to n - 1 do c[i, 0] := a[i + 1]: end do: for i to n - 1 do for j to i do c[i, j] := c[i, j - 1] + add(c[i - 1, i - r], r = 1 .. j): end do: end do: RETURN([seq(seq(c[i, j], j = 0 .. i), i = 0 .. n - 1)]): end proc:
# To get the flattened triangle up to the 9th row, we type
CBOUS2([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]); # Petros Hadjicostas, Feb 16 2021
MATHEMATICA
nmax = 9; Clear[CBOUS2, c]; CBOUS2[a_List] := CBOUS2[a] = Module[{i, j, n, r }, n = Min[Length[a], nmax]; For[i = 0, i <= n - 1, i++, c[i, 0] = a[[i + 1]]]; For[i = n - 1, i <= nmax, i++, For[j = 1, j <= i, j++, c[i, j] = c[i, j - 1] + Sum[c[i - 1, i - r], {r, 1, j}]]]; Return[Table[c[i, i], {i, 0, n - 1}]]]; Do[CBOUS2[Table[1, {n}]], {n, 0, nmax}]; Table[c[i, j], {i, 0, nmax - 1}, {j, 0, i}] // Flatten (* Jean-François Alcover, Jul 14 2017, adapted from Maple code for A059430 *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Jan 31 2001
EXTENSIONS
More terms from Floor van Lamoen, Oct 08 2001
STATUS
approved