[go: up one dir, main page]

login
A058884
Partial sums of the partition function (A000041), with the last term subtracted. Also the sum of the row of the character table for S_n corresponding to the partition n-1,1 for n>1. Also the sum over all partitions lambda of n of one less than the number of 1's in lambda.
9
-1, 0, 0, 1, 2, 5, 8, 15, 23, 37, 55, 83, 118, 171, 238, 332, 453, 618, 827, 1107, 1460, 1922, 2504, 3253, 4188, 5380, 6860, 8722, 11024, 13895, 17421, 21787, 27122, 33677, 41653, 51390, 63179, 77496, 94755, 115600, 140632, 170725, 206717, 249804, 301151, 362367, 435077, 521439, 623674, 744695
OFFSET
0,5
COMMENTS
For n>=1 number of up-steps in all partitions of n (represented as weakly increasing lists), see example. - Joerg Arndt, Sep 03 2014
LINKS
M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
Anders Claesson, Atli Fannar FranklĂ­n, and Einar SteingrĂ­msson, Permutations with few inversions, arXiv:2305.09457 [math.CO], 2023.
S. Heubach, A. Knopfmacher, M. E. Mays and A. Munagi, Inversions in Compositions of Integers, Quaestiones Mathematicae 34 (2011), 187-202.
FORMULA
From Andrew Howroyd, Apr 21 2023: (Start)
a(n) = A000070(n-1) - A000041(n) for n > 0.
G.f.: (2*x - 1)*P(x)/(1 - x) where P(x) is the g.f. of A000041. (End)
EXAMPLE
a(6) = 8 because the 11 partitions of 6
01: [ 1 1 1 1 1 1 ]
02: [ 1 1 1 1 2 ]
03: [ 1 1 1 3 ]
04: [ 1 1 2 2 ]
05: [ 1 1 4 ]
06: [ 1 2 3 ]
07: [ 1 5 ]
08: [ 2 2 2 ]
09: [ 2 4 ]
10: [ 3 3 ]
11: [ 6 ]
contain 0+1+1+1+1+2+1+0+1+0+0 = 8 up-steps. - Joerg Arndt, Sep 03 2014
MAPLE
a:= proc(n) uses combinat; add(numbpart(k), k=0..n-1)-numbpart(n) end:
seq(a(n), n=0..49);
MATHEMATICA
p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; Table[Count[Flatten[p[n]], 1] - l[n], {n, 0, 30}] (* Clark Kimberling, Mar 08 2012 *)
PROG
(PARI) a(n) = {sum(k=0, n-1, numbpart(k)) - numbpart(n)} \\ Andrew Howroyd, Apr 21 2023
(PARI) Vec((2*x - 1)/(1 - x)/eta(x + O(x^51))) \\ Andrew Howroyd, Apr 21 2023
CROSSREFS
Cf. A218074 (up-steps in partitions into distinct parts).
Sequence in context: A098894 A121641 A349796 * A073335 A239258 A362864
KEYWORD
sign,easy
AUTHOR
Edward Early, Jan 08 2001
EXTENSIONS
More terms from James A. Sellers, Sep 28 2001
STATUS
approved