[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058840
From Renyi's "beta expansion of 1 in base 3/2": sequence gives y(0), y(1), ...
4
1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
OFFSET
0,1
COMMENTS
Let r be a real number strictly between 1 and 2, x any real number between 0 and 1; define y = (y(i)) by x(0) = x; x(i+1) = r*x(i)-1 if r*x(i)>1 and r*x(i) otherwise; y(i) = integer part of x(i+1): y = (y(i)) is an infinite word on the alphabet (0,1). Here we take r = 3/2 and x = 1.
Kempner considers a "canonical" expansion of a real number in a non-integer base using the greedy algorithm. The greedy algorithm takes the largest possible integer digit in the range 0 <= digit < base at each digit position from high to low. For base 3/2, Kempner gives the present sequence of digits, except instead a(1)=0, as an example canonical 2 = 10.01000001001... Kempner notes too that a(1) omitted and the rest shifted down is a base-3/2 non-canonical 1 = .101000001001.... (canonical would be 1 = 1.000...). - Kevin Ryde, Dec 06 2019
REFERENCES
A. Renyi (1957), Representation for real numbers and their ergodic properties, Acta. Math. Acad. Sci. Hung., 8, 477-493.
LINKS
Aubrey J. Kempner, Anormal Systems of Numeration, American Mathematical Monthly, volume 43, number 10, December 1936, pages 610-617.
MATHEMATICA
r = 3/2; x = 1; a[0] = a[1] = 1;
For[n = 2, n<105, n++, x = If[r x > 1, r x - 1, r x]; a[n] = Floor[r x]];
Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 21 2018, a solution I owe to Benoit Cloitre *)
PROG
(Haskell)
import data.ratio ((%), numerator, denominator)
a058840 n = a058840_list !! n
a058840_list = 1 : renyi' 1 where
renyi' x = y : renyi' r where
(r, y) | q > 1 = (q - 1, 1)
| otherwise = (q, 0)
q = 3%2 * x
-- Reinhard Zumkeller, Jul 01 2011
(PARI) a_vector(len) = my(v=vector(len), c=2, d=1); for(i=1, len, if(c>=d, c-=d; v[i]=1); c*=3; d*=2); v; \\ Kevin Ryde, Dec 06 2019
CROSSREFS
Sequence in context: A329670 A183919 A355449 * A266155 A262683 A359816
KEYWORD
nonn,nice,easy
AUTHOR
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 05 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Feb 22 2001
STATUS
approved