[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058250
GCD of n-th primorial number and its totient.
8
1, 1, 2, 2, 6, 30, 30, 30, 30, 330, 2310, 2310, 2310, 2310, 2310, 53130, 690690, 20030010, 20030010, 20030010, 20030010, 20030010, 20030010, 821230410, 821230410, 821230410, 821230410, 13960916970, 739928599410, 739928599410
OFFSET
0,3
LINKS
FORMULA
a(n) = gcd(A002110(n), A000010(A002110(n))) = gcd(A002110(n), A005867(n)).
a(n) = A005867(n) / A038110(n+1). For example: For n = 4: a(4) = 48 / 8 = 6. - Jamie Morken, Apr 12 2019
EXAMPLE
a(6) = gcd(30030,5760) = 30.
MAPLE
[seq(igcd(product(ithprime(k), k=1..m), product(ithprime(k)-1, k=1..m)), m=1..50)];
MATHEMATICA
GCD[#, EulerPhi[#]]&/@Rest[FoldList[Times, 1, Prime[Range[30]]]] (* Harvey P. Dale, Dec 19 2012 *)
Fold[Append[#1, {#1, #2, GCD[#1, #2]} & @@ {#4 #1, #2 (#4 - 1)} & @@ Append[#1[[-1]], #2]] &, {{1, 1, 1}}, Prime@ Range[29]][[All, -1]] (* Michael De Vlieger, Apr 25 2019 *)
PROG
(PARI) a(n) = my(pr=prod(k=1, n, prime(k))); gcd(pr, eulerphi(pr)); \\ Michel Marcus, Apr 13 2019
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Labos Elemer, Dec 05 2000
EXTENSIONS
a(0) = 1 inserted by Michael De Vlieger, Apr 13 2019
STATUS
approved