[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058031
a(n) = n^4 - 2*n^3 + 3*n^2 - 2*n + 1, the Alexander polynomial for reef and granny knots.
7
1, 1, 9, 49, 169, 441, 961, 1849, 3249, 5329, 8281, 12321, 17689, 24649, 33489, 44521, 58081, 74529, 94249, 117649, 145161, 177241, 214369, 257049, 305809, 361201, 423801, 494209, 573049, 660969, 758641, 866761, 986049, 1117249, 1261129, 1418481, 1590121
OFFSET
0,3
COMMENTS
"The standard knot invariant, in the pre-Jones era of knot theory, was the Alexander polynomial, invented in 1926. This assigns to each knot a polynomial in a variable t, which can be calculated by following a standard procedure." See Courant and Robbins, p. 503.
First differences are in A105374. - Wesley Ivan Hurt, Apr 18 2016
REFERENCES
Richard Courant and Herbert Robbins, What Is Mathematics?, 2nd Ed. 1996, pp. 501-505.
FORMULA
G.f.: (1-4*x+14*x^2+4*x^3+9*x^4)/(1-x)^5. - Colin Barker, Jan 17 2012
a(n) = (n^2-n+1)^2. - Carmine Suriano, Feb 16 2012
3*a(n+3) = A062938(n) + A062938(n+1) + A062938(n+2). - Bruno Berselli, Feb 16 2012
a(n) = (n-2)*(n-1)*n*(n+1) + (2*n-1)^2. - Charlie Marion, Apr 11 2013
a(n) = A002061(n)^2. - Richard R. Forberg, Sep 03 2013
a(n) = (n*(n-1))^2 + (n-1)^2 + n^2, sum of three squares. - Carmine Suriano, Jun 16 2014
a(n) = A002378(A002378(n-1))+A002378(n-1)+1, where A002378(-1)=0. [Bruno Berselli, May 28 2015]
E.g.f.: exp(x)*(1 + 4*x^2 + 4*x^3 + x^4). - Ilya Gutkovskiy, Apr 16 2016
a(n) = (n-1)^4 + 2*(n-1)^3 + 3*(n-1)^2 + 2*(n-1) + 1. - Bruce J. Nicholson, Apr 07 2017
For n>0 a(n) = A002522(n)*A002522(n-1) - 1. - Bruce J. Nicholson, Jul 02 2017
MAPLE
A058031:=n->(n^2 - n + 1)^2; seq(A058031(n), n=0..50); # Wesley Ivan Hurt, Jun 19 2014
MATHEMATICA
Table[(n^2 - n + 1)^2, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 19 2014 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 1, 9, 49, 169}, 50] (* Vincenzo Librandi, Apr 11 2017 *)
PROG
(Magma) [(n^2 - n + 1)^2 : n in [0..50]]; // Wesley Ivan Hurt, Jun 19 2014
(PARI) a(n)=n^4-2*n^3+3*n^2-2*n+1 \\ Charles R Greathouse IV, Jun 19 2014
(PARI) lista(nn) = for(n=0, nn, print1((n^2-n+1)^2, ", ")); \\ Altug Alkan, Apr 16 2016
(Python) def a(n): return n**4 - 2*n**3 + 3*n**2 - 2*n + 1 # Indranil Ghosh, Apr 06 2017
KEYWORD
nonn,easy
AUTHOR
Jason Earls, Nov 21 2000
EXTENSIONS
Name corrected by Andrey Zabolotskiy, Nov 21 2017
STATUS
approved