[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^4+4 = (n^2-2*n+2)*(n^2+2*n+2) = ((n-1)^2+1)*((n+1)^2+1).
4

%I #45 Sep 08 2022 08:45:02

%S 4,5,20,85,260,629,1300,2405,4100,6565,10004,14645,20740,28565,38420,

%T 50629,65540,83525,104980,130325,160004,194485,234260,279845,331780,

%U 390629,456980,531445,614660,707285,810004,923525,1048580,1185925

%N a(n) = n^4+4 = (n^2-2*n+2)*(n^2+2*n+2) = ((n-1)^2+1)*((n+1)^2+1).

%D Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1997, Vol. 1, exercise 1.2.1, Nr. 11, p. 19. [From _Reinhard Zumkeller_, Apr 11 2010]

%H Vincenzo Librandi, <a href="/A057781/b057781.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F G.f.: -(5*x^4-5*x^3+35*x^2-15*x+4) / (x-1)^5. - _Colin Barker_, Mar 29 2013

%F a(n) = A002523(n) + 3.

%F a(n) = A002522(n-1) * A002522(n+1).

%F Sum_{k=0..n} A033999(k)*A016755(k)/a(k) = A033999(n)*(n+1)/A053755(n+1), see Knuth reference. - _Reinhard Zumkeller_, Apr 11 2010

%F a(n) = (n^2)^2 + 2^2 = (n^2-2)^2 + (2*n)^2. - _Thomas Ordowski_, Sep 15 2015

%F a(n) = A272298(3*n)/3^4. - _Bruno Berselli_, Apr 29 2016

%F Sum_{n>=0} 1/a(n) = (Pi*coth(Pi) + 1)/8. - _Amiram Eldar_, Oct 04 2021

%t Table[n^4+4,{n,0,60}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 15 2011 *)

%t LinearRecurrence[{5,-10,10,-5,1},{4,5,20,85,260},40] (* _Harvey P. Dale_, Aug 20 2020 *)

%o (Magma) [n^4+4: n in [0..40]]; // _Vincenzo Librandi_, Sep 07 2011

%o (PARI) first(m)=vector(m,i,i--;i^4+4) \\ _Anders Hellström_, Sep 15 2015

%Y Cf. A016755, A033999, A053755.

%Y Cf. A000583, A002522, A002523, A272298.

%K nonn,easy

%O 0,1

%A _Henry Bottomley_, Nov 04 2000