Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jan 15 2023 17:35:46
%S 1,2,10,27,150,641,3796,21525,134863,846159,5464173,35548106,
%T 234007149,1551388944,10361158723
%N Total area of all polyominoes with perimeter 2n.
%H Andrew Clarke, <a href="http://www.recmath.com/PolyPages/PolyPages/Isopolyos.html">Isoperimetrical Polyominoes</a>
%H Andrew Clarke, <a href="/A057730/a057730.gif">Picture from Andrew Clarke's page showing the polyominoes of perimeters 4, 6, 8 and 10.</a>
%e a(2*n=4) = 1 with area 1: 1*1=1.
%e a(2*n=6) is 1 with area 2: 1*2=2.
%e a(2*n=8) is 2 with area 3, 1 with area 4: 2*3+4=10.
%e a(2*n=10) is 4 with area 4, 1 with area 5, 1 with area 6: 4*4+5+6=27.
%e a(2*n=12) = 11*5 +7*6 +4*7 +2*8 +1*9 = 150.
%e a(2*n=14) = 27*6 +21*7 +21*8+ 9*9 + 6*10 +1*11 + 1*12 = 641. - _R. J. Mathar_, Feb 18 2021
%e a(2*n=16) = 7*83 + 8*91 + 9*89 + 10*67 + 11*45 + 12*23 + 13*11 + 14*4 + 15*2 + 16*1. - _John Mason_, Feb 18 2021
%Y Cf. A057730.
%K nonn,more
%O 2,2
%A _N. J. A. Sloane_, Nov 04 2000
%E Link updated by _William Rex Marshall_, Dec 16 2009
%E Offset set to 2 by _R. J. Mathar_, Feb 18 2021
%E a(8) from _John Mason_, Feb 18 2021
%E a(9)-a(16) from _John Mason_, Sep 08 2022