Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Dec 11 2023 06:25:29
%S 5,26,13,66,33,11,56,28,14,7,36,18,9,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,
%T 1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,
%U 6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6,3,1,6
%N Trajectory of 5 under the '5x+1' map.
%C The 'Px + 1 map': if x is divisible by any prime less than P then divide out these primes one at a time starting with the smallest; otherwise multiply x by P and add 1. This is similar to A057684, but with P = 5 instead of P = 13. - _Alonso del Arte_, Jul 04 2015
%H Colin Barker, <a href="/A057688/b057688.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1).
%F a(0) = 5, a(n) = a(n - 1)/2 if a(n - 1) is even, a(n) = a(n - 1)/3 if a(n - 1) is odd and divisible by 3, a(n) = 5a(n - 1) otherwise.
%F From _Colin Barker_, Oct 10 2019: (Start)
%F G.f.: (5 + 26*x + 13*x^2 + 61*x^3 + 7*x^4 - 2*x^5 - 10*x^6 - 5*x^7 + 3*x^8 - 49*x^9 + 8*x^10 + 4*x^11 + 2*x^12 - 33*x^13 - 17*x^14 - 3*x^15) / ((1 - x)*(1 + x + x^2)).
%F a(n) = a(n-3) for n>15.
%F (End)
%e 7 is odd and not divisible by 3, so it's followed by 5 * 7 + 1 = 36.
%e 36 is even, so it's followed by 36/2 = 18.
%e 18 is even, so it's followed by 18/2 = 9.
%e 9 is odd and divisible by 3, so it's followed by 9/3 = 3.
%t NestList[If[EvenQ[#], #/2, If[Mod[#, 3] == 0, #/3, 5# + 1]] &, 5, 100] (* _Alonso del Arte_, Jul 04 2015 *)
%o (PARI) Vec((5 + 26*x + 13*x^2 + 61*x^3 + 7*x^4 - 2*x^5 - 10*x^6 - 5*x^7 + 3*x^8 - 49*x^9 + 8*x^10 + 4*x^11 + 2*x^12 - 33*x^13 - 17*x^14 - 3*x^15) / ((1 - x)*(1 + x + x^2)) + O(x^100)) \\ _Colin Barker_, Oct 10 2019
%Y Cf. A057446, A057216, A057522, A057534, A057614. See also A033478, A057684, A057685, A057686, A057687, A057689, A057690, A057691.
%Y Cf. A259207.
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, Oct 20 2000