[go: up one dir, main page]

login
A056538
Irregular triangle read by rows: row n lists the divisors of n in decreasing order.
34
1, 2, 1, 3, 1, 4, 2, 1, 5, 1, 6, 3, 2, 1, 7, 1, 8, 4, 2, 1, 9, 3, 1, 10, 5, 2, 1, 11, 1, 12, 6, 4, 3, 2, 1, 13, 1, 14, 7, 2, 1, 15, 5, 3, 1, 16, 8, 4, 2, 1, 17, 1, 18, 9, 6, 3, 2, 1, 19, 1, 20, 10, 5, 4, 2, 1, 21, 7, 3, 1, 22, 11, 2, 1, 23, 1, 24, 12, 8, 6, 4, 3, 2, 1, 25, 5, 1, 26, 13, 2, 1, 27, 9
OFFSET
1,2
COMMENTS
Old name was "Replace n by its divisors in reverse order."
This gives the second elements of the ordered pairs (a,b), a >= 1, b >= 1, ordered by their product ab.
T(n,k) = n / A027750(n,k) = A027750(n,n-k+1), 1 <= k <= A000005(n). - Reinhard Zumkeller, Sep 28 2014
The 2nd column of the triangle is the largest proper divisor (A032742). - Charles Kusniec, Jan 30 2021
LINKS
FORMULA
a(n) = A064894(A064896(n)).
EXAMPLE
Triangle begins:
1;
2, 1;
3, 1;
4, 2, 1;
5, 1;
6, 3, 2, 1;
7, 1;
8, 4, 2, 1;
9, 3, 1;
10, 5, 2, 1;
11, 1;
12, 6, 4, 3, 2, 1;
13, 1;
14, 7, 2, 1;
15, 5, 3, 1;
16, 8, 4, 2, 1;
17, 1;
18, 9, 6, 3, 2, 1;
19, 1;
20, 10, 5, 4, 2, 1;
MAPLE
map(op, [seq(reverse(sort(divisors(j))), j=1..30)]);
cdr := proc(l) if 0 = nops(l) then ([]) else (l[2..nops(l)]): fi: end:
reverse := proc(l) if 0 = nops(l) then ([]) else [op(reverse(cdr(l))), l[1]]; fi: end:
MATHEMATICA
Table[Reverse@ Divisors@ n, {n, 27}] // Flatten (* Michael De Vlieger, Jul 27 2016 *)
PROG
(Magma) [Reverse(Divisors(n)) : n in [1..30]];
(Haskell)
a056538 n k = a056538_tabf !! (n-1) !! (k-1)
a056538_row n = a056538_tabf !! (n-1)
a056538_tabf = map reverse a027750_tabf
-- Reinhard Zumkeller, Sep 28 2014
(PARI) row(n)=Vecrev(divisors(n)) \\ Charles R Greathouse IV, Sep 02 2015
CROSSREFS
Cf. A027750 for the first elements, A056534, A168017, A000005 (row lengths), A000203 (row sums), A032742 (largest proper divisor).
Sequence in context: A319848 A364749 A233772 * A266742 A120385 A216477
KEYWORD
nonn,tabf
AUTHOR
Antti Karttunen, Jun 20, 2000
EXTENSIONS
Definition revised by N. J. A. Sloane, Jul 27 2016
STATUS
approved