[go: up one dir, main page]

login
A056495
Number of primitive (period n) periodic palindromes using a maximum of four different symbols.
1
4, 6, 12, 30, 60, 138, 252, 600, 1008, 2490, 4092, 10050, 16380, 40698, 65460, 163200, 262140, 654192, 1048572, 2618850, 4194036, 10481658, 16777212, 41932200, 67108800, 167755770, 268434432, 671047650
OFFSET
1,1
COMMENTS
Number of aperiodic necklaces with four colors that are the same when turned over and hence have reflectional symmetry but no rotational symmetry. - Herbert Kociemba, Nov 29 2016
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
a(n) = Sum_{d|n} mu(d)*A056486(n/d).
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of necklaces with reflectional symmetry but no rotational symmetry and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)). (End)
EXAMPLE
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
MATHEMATICA
mx=40; gf[x_, k_]:=Sum[ MoebiusMu[n]*Sum[Binomial[k, i]x^(n i), {i, 0, 2}]/( 1-k x^(2n)), {n, mx}]; CoefficientList[Series[gf[x, 4], {x, 0, mx}], x] (* Herbert Kociemba, Nov 29 2016 *)
CROSSREFS
Column 4 of A284856.
Cf. A056460.
Sequence in context: A068570 A092320 A375197 * A351523 A263656 A178674
KEYWORD
nonn
STATUS
approved