[go: up one dir, main page]

login
A056061
Number of square divisors of central binomial coefficients.
9
1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 4, 4, 8, 8, 4, 6, 2, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 2, 8, 12, 4, 8, 8, 8, 8, 8, 4, 6, 2, 2, 2, 3, 2, 3, 3, 3, 4, 4, 2, 4, 2, 4, 4, 4, 1, 2, 2, 2, 4, 4, 8, 12, 2, 4, 12, 12, 4, 4, 8, 12, 12, 12, 4, 6, 8, 12, 12, 12, 8, 16, 8, 8, 6
OFFSET
1,6
LINKS
FORMULA
EXAMPLE
n=27: binomial(27,13) = 20058300, its largest square-divisor is 900=30^2 so a(27) = tau(30) = 8.
MATHEMATICA
Table[Count[Divisors@ Binomial[n, Floor[n/2]], d_ /; IntegerQ@ Sqrt@ d], {n, 0, 84}] (* Michael De Vlieger, Feb 18 2017 *)
PROG
(PARI) a(n) = sumdiv(binomial(n, n\2), d, issquare(d)); \\ Michel Marcus, Feb 19 2017
KEYWORD
nonn
AUTHOR
Labos Elemer Jul 26 2000
STATUS
approved