[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055734
Number of distinct primes dividing phi(n).
3
0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 3, 3, 2, 2, 1, 3, 2, 2
OFFSET
1,7
COMMENTS
Murty and Murty show that the normal order of a(n) is (log log n)^2/2, that is, sum_{1 <= k <= n} a(k) ~ n/2 * (log log n)^2. - Charles R Greathouse IV, Sep 13 2013. See also Erdos-Pomerance (1985) and Erdos-Granville-et-al. (1990). - N. J. A. Sloane, Sep 02 2017
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
Paul Erdős and C. Pomerance, On the normal number of prime factors of phi(n), Rocky Mountain Math. J. 15 (1985), 343-352.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
M. Ram Murty and V. Kumar Murty, Prime divisors of Fourier coefficients of modular forms, Duke Math. J. 51:1 (1984), pp. 57-76.
FORMULA
a(n) = A001221(A000010(n)).
MATHEMATICA
Table[PrimeNu[EulerPhi[n]], {n, 1, 50}] (* G. C. Greubel, May 08 2017 *)
PROG
(PARI) a(n)=omega(eulerphi(n)) \\ Charles R Greathouse IV, Sep 13 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 11 2000
STATUS
approved