[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055555
a(n) = n!*(n!+1)/2.
2
1, 1, 3, 21, 300, 7260, 259560, 12703320, 812871360, 65841128640, 6584096534400, 796675481078400, 114721266640780800, 19387894024929830400, 3800027228319587865600, 855006126362753549184000, 218881568348707987666944000, 63256773252773762936322048000
OFFSET
0,3
COMMENTS
a(n) is the number of unordered pairs (not necessarily distinct) of elements in S_n (the symmetric group on n letters). That is, a(n) = binomial(n!,2) + n!. - Geoffrey Critzer, Jan 09 2016
FORMULA
a(n) + (-n^2-n-3)*a(n-1) + (n-1)*(n^2+2*n-1)*a(n-2) - 2*(n-1)*(n-2)^2*a(n-3) = 0. - R. J. Mathar, Mar 21 2013
a(n) = Sum_{k=1..n!} k. - Pedro Caceres, Mar 10 2018
a(n) = A000217(A000142(n)). - Michel Marcus, Mar 11 2018
MATHEMATICA
Table[n!*(n! + 1)/2, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *)
PROG
(Magma) [Factorial(n)*(Factorial(n)+1)/2: n in [0..20]]; // Vincenzo Librandi, Jan 10 2016
(PARI) a(n) = n!*(n!+1)/2; \\ Altug Alkan, Jan 10 2015
CROSSREFS
Sequence in context: A361214 A171201 A193206 * A208731 A158888 A331583
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 19 2000
STATUS
approved