[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A043301
a(n) = 2^n*Sum_{k=0..n} (n+k)!/((n-k)!*k!*4^k).
7
1, 3, 13, 77, 591, 5627, 64261, 857901, 13125559, 226566107, 4357258269, 92408688077, 2142828858847, 53940356223483, 1464960933469429, 42699628495507373, 1329548327094606279, 44045893308104036699, 1546924459092019709581, 57412388559637145401293
OFFSET
0,2
REFERENCES
Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Integrals and Asymptotic Expansions, p. 229.
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th ed., Section 3.737.1, p. 423.
LINKS
W. Mlotkowski, A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
FORMULA
D-finite with recurrence: a(n) = (2*n-1)*a(n-1) + 4*a(n-2), n>1.
a(n) = 2^(n+1)n!(e^2/Pi)*Integral_{t=0..infinity} cos(2t)/(1+t^2)^(n+1)dt.
E.g.f.: 2*(e^2/Pi)*Integral_{t=0..infinity} cos(2t)/(1+t^2-2x)dt.
2^n * y_n(1/2), where y_n(x) are the Bessel polynomials A001498.
G.f.: 1/G(0) where G(k) = 1 - 2*x - x*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 17 2011
E.g.f.: exp(2-2*sqrt(1-2*x))/sqrt(1-2*x). - Vaclav Kotesovec, Oct 21 2012
a(n) ~ 2^(n+1/2)*n^n/exp(n-2). - Vaclav Kotesovec, Oct 21 2012
G.f.: T(0)/(1-2*x), where T(k) = 1 - x*(k+1)/( x*(k+1) - (1-2*x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2013
a(n) = 2^(n+1)*exp(2)/sqrt(Pi)*BesselK(1/2+n,2). - Gerry Martens, Jul 22 2015
a(n) = 2^n*hypergeom( [n+1, -n], [], -1/4). - Peter Luschny, Nov 10 2016
MAPLE
f:= gfun:-rectoproc({a(0)=1, a(1)=3, a(n) = (2*n-1)*a(n-1) + 4*a(n-2)}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jul 23 2015
A043301 := n-> 2^n*hypergeom([n+1, -n], [], -1/4):
seq(simplify(A043301(n)), n=0..19); # Peter Luschny, Nov 10 2016
MATHEMATICA
Table[2^n Sum[(n+k)!/((n-k)!k! 4^k), {k, 0, n}], {n, 0, 20}] (* or *) RecurrenceTable[{a[0]==1, a[1]==3, a[n]==(2n-1)a[n-1]+4a[n-2]}, a[n], {n, 20}] (* Harvey P. Dale, Aug 14 2011 *)
CoefficientList[Series[E^(2-2*Sqrt[1-2*x])/Sqrt[1-2*x], {x, 0, 20}], x]*Range[0, 20]! (* Vaclav Kotesovec, Oct 21 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(2-2*sqrt(1-2*x))/sqrt(1-2*x))) \\ Joerg Arndt, May 04 2013
(Magma) I:=[3, 13]; [1] cat [n le 2 select I[n] else (2*n-1)*Self(n-1) + 4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 24 2015
CROSSREFS
Sequence in context: A351421 A273953 A127127 * A141762 A062872 A288954
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Apr 04 2002
EXTENSIONS
Edited by Michael Somos, Jul 16 2002
STATUS
approved