[go: up one dir, main page]

login
A041008
Numerators of continued fraction convergents to sqrt(7).
11
2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
OFFSET
0,1
LINKS
C. Elsner, M. Stein, On Error Sum Functions Formed by Convergents of Real Numbers, J. Int. Seq. 14 (2011) # 11.8.6.
FORMULA
G.f.: (2 + 3*x + 5*x^2 + 8*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7)/(1 - 16*x^4 + x^8).
MATHEMATICA
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
LinearRecurrence[{0, 0, 0, 16, 0, 0, 0, -1}, {2, 3, 5, 8, 37, 45, 82, 127}, 40] (* Harvey P. Dale, Jul 23 2021 *)
PROG
From M. F. Hasler, Nov 01 2019: (Start)
(PARI) A041008=contfracpnqn(c=contfrac(sqrt(7)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use:
A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]}
extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[, 1]]*c[, 2]); A} \\ (End)
CROSSREFS
Cf. A010465, A041009 (denominators), A266698 (quadrisection), A001081 (quadrisection).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041010 (m=8), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).
Sequence in context: A281618 A059359 A042069 * A041569 A268480 A128485
KEYWORD
nonn,cofr,frac,easy
STATUS
approved