[go: up one dir, main page]

login
A040047
Primes p such that x^3 = 6 has no solution mod p.
4
13, 19, 31, 43, 61, 67, 73, 79, 97, 103, 109, 127, 151, 157, 193, 199, 211, 223, 229, 271, 277, 283, 331, 367, 373, 397, 433, 457, 463, 487, 523, 547, 577, 601, 613, 619, 661, 673, 691, 709, 733, 739, 757, 769
OFFSET
1,1
COMMENTS
Complement of A040046 relative to A000040. - Vincenzo Librandi, Sep 17 2012
LINKS
Benjamin Braun, Brian Davis, Antichain Simplices, arXiv:1901.01417 [math.CO], 2019.
Stepan Kochemazov, Oleg Zaikin, Eduard Vatutin, Alexey Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, J. Int. Seq., Vol. 23 (2020), Article 20.1.2.
MATHEMATICA
ok[p_]:= Reduce[Mod[x^3 - 6, p] == 0, x, Integers] == False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 17 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(1000) | not exists{x : x in ResidueClassRing(p) | x^3 eq 6} ]; // Vincenzo Librandi, Sep 17 2012
CROSSREFS
Sequence in context: A164333 A182365 A069324 * A163847 A051644 A101408
KEYWORD
nonn,easy
AUTHOR
STATUS
approved