[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A040038
Primes p such that x^3 = 3 has no solution mod p.
3
7, 13, 19, 31, 37, 43, 79, 97, 109, 127, 139, 157, 163, 181, 199, 211, 223, 229, 241, 277, 283, 313, 331, 337, 349, 373, 379, 397, 409, 421, 433, 457, 463, 487, 541, 571, 601, 607, 631, 673, 691, 709, 733, 739
OFFSET
1,1
COMMENTS
Primes of the form 7x^2+3xy+9y^2, whose discriminant is -243. - T. D. Noe, May 17 2005
Complement of A040036 relative to A000040. - Vincenzo Librandi, Sep 17 2012
LINKS
MATHEMATICA
ok[p_]:= Reduce[Mod[x^3 - 3, p] == 0, x, Integers] == False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 17 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(1000) | not exists{x : x in ResidueClassRing(p) | x^3 eq 3} ]; // Vincenzo Librandi, Sep 17 2012
(PARI) forprime(p=2, 10^3, if(#polrootsmod(x^3-3, p)==0, print1(p, ", "))) \\ Joerg Arndt, Jul 16 2015
CROSSREFS
Sequence in context: A040079 A038160 A106870 * A081765 A257002 A216567
KEYWORD
nonn,easy
AUTHOR
STATUS
approved