[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049587
Primes p such that x^55 = 2 has a solution mod p.
2
2, 3, 5, 7, 13, 17, 19, 29, 37, 43, 47, 53, 59, 73, 79, 83, 97, 103, 107, 109, 113, 127, 137, 139, 149, 151, 157, 163, 167, 173, 179, 193, 197, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 277, 283, 293, 307, 313, 317, 337, 347, 349, 359, 367, 373, 379
OFFSET
1,1
COMMENTS
Complement of A059642 relative to A000040. - Vincenzo Librandi, Sep 14 2012
MATHEMATICA
ok[p_] := Reduce[Mod[x^55 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(400) | exists(t){x : x in ResidueClassRing(p) | x^55 eq 2}]; // Vincenzo Librandi, Sep 14 2012
(PARI)
N=10^4; default(primelimit, N);
ok(p, r, k)={ return ( (p==r) || (Mod(r, p)^((p-1)/gcd(k, p-1))==1) ); }
forprime(p=2, N, if (ok(p, 2, 55), print1(p, ", ")));
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
Sequence in context: A133244 A077040 A153503 * A293008 A038903 A136003
KEYWORD
nonn,easy
STATUS
approved